Switch to K&R style indentation.
[tinc] / src / graph.c
1 /*
2     graph.c -- graph algorithms
3     Copyright (C) 2001-2002 Guus Sliepen <guus@sliepen.eu.org>,
4                   2001-2002 Ivo Timmermans <ivo@o2w.nl>
5
6     This program is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 2 of the License, or
9     (at your option) any later version.
10
11     This program is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15
16     You should have received a copy of the GNU General Public License
17     along with this program; if not, write to the Free Software
18     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20     $Id: graph.c,v 1.1.2.19 2002/09/09 21:24:34 guus Exp $
21 */
22
23 /* We need to generate two trees from the graph:
24
25    1. A minimum spanning tree for broadcasts,
26    2. A single-source shortest path tree for unicasts.
27
28    Actually, the first one alone would suffice but would make unicast packets
29    take longer routes than necessary.
30
31    For the MST algorithm we can choose from Prim's or Kruskal's. I personally
32    favour Kruskal's, because we make an extra AVL tree of edges sorted on
33    weights (metric). That tree only has to be updated when an edge is added or
34    removed, and during the MST algorithm we just have go linearly through that
35    tree, adding safe edges until #edges = #nodes - 1. The implementation here
36    however is not so fast, because I tried to avoid having to make a forest and
37    merge trees.
38
39    For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
40    simple breadth-first search is presented here.
41
42    The SSSP algorithm will also be used to determine whether nodes are directly,
43    indirectly or not reachable from the source. It will also set the correct
44    destination address and port of a node if possible.
45 */
46
47 #include "config.h"
48
49 #include <stdio.h>
50 #include <syslog.h>
51 #include "config.h"
52 #include <string.h>
53 #ifdef HAVE_SYS_PARAM_H
54 #include <sys/param.h>
55 #endif
56 #include <netinet/in.h>
57
58 #include <avl_tree.h>
59 #include <utils.h>
60
61 #include "netutl.h"
62 #include "node.h"
63 #include "edge.h"
64 #include "connection.h"
65 #include "process.h"
66 #include "device.h"
67
68 #include "system.h"
69
70 /* Implementation of Kruskal's algorithm.
71    Running time: O(EN)
72    Please note that sorting on weight is already done by add_edge().
73 */
74
75 void mst_kruskal(void)
76 {
77         avl_node_t *node, *next;
78         edge_t *e;
79         node_t *n;
80         connection_t *c;
81         int nodes = 0;
82         int safe_edges = 0;
83         int skipped;
84
85         cp();
86         
87         /* Clear MST status on connections */
88
89         for(node = connection_tree->head; node; node = node->next) {
90                 c = (connection_t *) node->data;
91                 c->status.mst = 0;
92         }
93
94         /* Do we have something to do at all? */
95
96         if(!edge_weight_tree->head)
97                 return;
98
99         if(debug_lvl >= DEBUG_SCARY_THINGS)
100                 syslog(LOG_DEBUG, "Running Kruskal's algorithm:");
101
102         /* Clear visited status on nodes */
103
104         for(node = node_tree->head; node; node = node->next) {
105                 n = (node_t *) node->data;
106                 n->status.visited = 0;
107                 nodes++;
108         }
109
110         /* Starting point */
111
112         ((edge_t *) edge_weight_tree->head->data)->from->status.visited = 1;
113
114         /* Add safe edges */
115
116         for(skipped = 0, node = edge_weight_tree->head; node; node = next) {
117                 next = node->next;
118                 e = (edge_t *) node->data;
119
120                 if(!e->reverse || e->from->status.visited == e->to->status.visited) {
121                         skipped = 1;
122                         continue;
123                 }
124
125                 e->from->status.visited = 1;
126                 e->to->status.visited = 1;
127
128                 if(e->connection)
129                         e->connection->status.mst = 1;
130
131                 if(e->reverse->connection)
132                         e->reverse->connection->status.mst = 1;
133
134                 safe_edges++;
135
136                 if(debug_lvl >= DEBUG_SCARY_THINGS)
137                         syslog(LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name,
138                                    e->to->name, e->weight);
139
140                 if(skipped) {
141                         skipped = 0;
142                         next = edge_weight_tree->head;
143                         continue;
144                 }
145         }
146
147         if(debug_lvl >= DEBUG_SCARY_THINGS)
148                 syslog(LOG_DEBUG, "Done, counted %d nodes and %d safe edges.", nodes,
149                            safe_edges);
150 }
151
152 /* Implementation of a simple breadth-first search algorithm.
153    Running time: O(E)
154 */
155
156 void sssp_bfs(void)
157 {
158         avl_node_t *node, *from, *next, *to;
159         edge_t *e;
160         node_t *n;
161         avl_tree_t *todo_tree;
162         int indirect;
163         char *name;
164         char *address, *port;
165         char *envp[7];
166         int i;
167
168         cp();
169
170         todo_tree = avl_alloc_tree(NULL, NULL);
171
172         /* Clear visited status on nodes */
173
174         for(node = node_tree->head; node; node = node->next) {
175                 n = (node_t *) node->data;
176                 n->status.visited = 0;
177                 n->status.indirect = 1;
178         }
179
180         /* Begin with myself */
181
182         myself->status.visited = 1;
183         myself->status.indirect = 0;
184         myself->nexthop = myself;
185         myself->via = myself;
186         node = avl_alloc_node();
187         node->data = myself;
188         avl_insert_top(todo_tree, node);
189
190         /* Loop while todo_tree is filled */
191
192         while(todo_tree->head) {
193                 for(from = todo_tree->head; from; from = next) {        /* "from" is the node from which we start */
194                         next = from->next;
195                         n = (node_t *) from->data;
196
197                         for(to = n->edge_tree->head; to; to = to->next) {       /* "to" is the edge connected to "from" */
198                                 e = (edge_t *) to->data;
199
200                                 if(!e->reverse)
201                                         continue;
202
203                                 /* Situation:
204
205                                    /
206                                    /
207                                    ------(n)-----(e->to)
208                                    \
209                                    \
210
211                                    n->address is set to the e->address of the edge left of n to n.
212                                    We are currently examining the edge e right of n from n:
213
214                                    - If e->reverse->address != n->address, then e->to is probably
215                                    not reachable for the nodes left of n. We do as if the indirectdata
216                                    flag is set on edge e.
217                                    - If edge e provides for better reachability of e->to, update
218                                    e->to and (re)add it to the todo_tree to (re)examine the reachability
219                                    of nodes behind it.
220                                  */
221
222                                 indirect = n->status.indirect || e->options & OPTION_INDIRECT
223                                         || ((n != myself)
224                                                 && sockaddrcmp(&n->address, &e->reverse->address));
225
226                                 if(e->to->status.visited
227                                    && (!e->to->status.indirect || indirect))
228                                         continue;
229
230                                 e->to->status.visited = 1;
231                                 e->to->status.indirect = indirect;
232                                 e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
233                                 e->to->via = indirect ? n->via : e->to;
234                                 e->to->options = e->options;
235
236                                 if(sockaddrcmp(&e->to->address, &e->address)) {
237                                         node = avl_unlink(node_udp_tree, e->to);
238                                         e->to->address = e->address;
239
240                                         if(e->to->hostname)
241                                                 free(e->to->hostname);
242
243                                         e->to->hostname = sockaddr2hostname(&e->to->address);
244                                         avl_insert_node(node_udp_tree, node);
245                                 }
246
247                                 node = avl_alloc_node();
248                                 node->data = e->to;
249                                 avl_insert_before(todo_tree, from, node);
250                         }
251
252                         avl_delete_node(todo_tree, from);
253                 }
254         }
255
256         avl_free_tree(todo_tree);
257
258         /* Check reachability status. */
259
260         for(node = node_tree->head; node; node = next) {
261                 next = node->next;
262                 n = (node_t *) node->data;
263
264                 if(n->status.visited != n->status.reachable) {
265                         n->status.reachable = !n->status.reachable;
266
267                         if(debug_lvl >= DEBUG_TRAFFIC)
268                                 if(n->status.reachable)
269                                         syslog(LOG_DEBUG, _("Node %s (%s) became reachable"),
270                                                    n->name, n->hostname);
271                                 else
272                                         syslog(LOG_DEBUG, _("Node %s (%s) became unreachable"),
273                                                    n->name, n->hostname);
274
275                         n->status.validkey = 0;
276                         n->status.waitingforkey = 0;
277
278                         asprintf(&envp[0], "NETNAME=%s", netname ? : "");
279                         asprintf(&envp[1], "DEVICE=%s", device ? : "");
280                         asprintf(&envp[2], "INTERFACE=%s", interface ? : "");
281                         asprintf(&envp[3], "NODE=%s", n->name);
282                         sockaddr2str(&n->address, &address, &port);
283                         asprintf(&envp[4], "REMOTEADDRESS=%s", address);
284                         asprintf(&envp[5], "REMOTEPORT=%s", port);
285                         envp[6] = NULL;
286
287                         asprintf(&name,
288                                          n->status.reachable ? "hosts/%s-up" : "hosts/%s-down",
289                                          n->name);
290                         execute_script(name, envp);
291
292                         free(name);
293                         free(address);
294                         free(port);
295
296                         for(i = 0; i < 7; i++)
297                                 free(envp[i]);
298                 }
299         }
300 }
301
302 void graph(void)
303 {
304         mst_kruskal();
305         sssp_bfs();
306 }